首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10367篇
  免费   1246篇
  国内免费   1918篇
化学   7325篇
晶体学   188篇
力学   1071篇
综合类   122篇
数学   1906篇
物理学   2919篇
  2024年   18篇
  2023年   165篇
  2022年   273篇
  2021年   421篇
  2020年   601篇
  2019年   388篇
  2018年   345篇
  2017年   348篇
  2016年   474篇
  2015年   370篇
  2014年   607篇
  2013年   847篇
  2012年   580篇
  2011年   613篇
  2010年   515篇
  2009年   622篇
  2008年   643篇
  2007年   642篇
  2006年   552篇
  2005年   574篇
  2004年   516篇
  2003年   497篇
  2002年   484篇
  2001年   330篇
  2000年   272篇
  1999年   247篇
  1998年   225篇
  1997年   188篇
  1996年   161篇
  1995年   144篇
  1994年   129篇
  1993年   107篇
  1992年   131篇
  1991年   59篇
  1990年   52篇
  1989年   50篇
  1988年   53篇
  1987年   43篇
  1986年   43篇
  1985年   38篇
  1984年   28篇
  1983年   13篇
  1982年   29篇
  1981年   22篇
  1980年   9篇
  1979年   25篇
  1978年   12篇
  1977年   7篇
  1976年   8篇
  1973年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
The artificially accurate design of nonmetal electrocatalysts’ active site has been a huge challenge because no pure active species with the specific structure could be strictly controlled by traditional synthetic methods. Species with a multiconfiguration in the catalyst hinder identification of the active site and the subsequent comprehension of the reaction mechanism. We have developed a novel electro-assisted molecular assembly strategy to obtain a pure pentagon ring on perfect graphene avoiding other reconstructed structures. More importantly, the active atom was confirmed by the subtle passivation process as the topmost carbon atom. Recognition of the carbon-defect electrocatalysis reaction mechanism was first downsized to the single-atom scale from the experimental perspective. It is expected that this innovative electro-assisted molecular assembly strategy could be extensively applied in the active structure-controlled synthesis of nonmetal electrocatalysts and verification of the exact active atom.  相似文献   
2.
Prediction of drag reduction effect caused by pulsating pipe flows is examined using machine learning. First, a large set of flow field data is obtained experimentally by measuring turbulent pipe flows with various pulsation patterns. Consequently, more than 7000 waveforms are applied, obtaining a maximum drag reduction rate and maximum energy saving rate of 38.6% and 31.4%, respectively. The results indicate that the pulsating flow effect can be characterized by the pulsation period and pressure gradient during acceleration and deceleration. Subsequently, two machine learning models are tested to predict the drag reduction rate. The results confirm that the machine learning model developed for predicting the time variation of the flow velocity and differential pressure with respect to the pump voltage can accurately predict the nonlinearity of pressure gradients. Therefore, using this model, the drag reduction effect can be estimated with high accuracy.  相似文献   
3.
《Current Applied Physics》2020,20(3):456-461
Carbon-based electrocatalysts for oxygen reduction reaction (ORR), especially in anion exchange membrane fuel cells (AEMFCs), have received a lot of attention because they exhibit excellent stability and are comparable to commercial Pt/C catalysts. Currently, to maximize the catalytic activity of carbon-based electrocatalysts, there are two major strategies: heteroatom doping or exposing active edge sites. However, the approach of increasing heteroatomic dopants of active edge sites has been rarely addressed. In this study, we present a simple strategy to prepare edge-enriched graphene catalysts with an increased ratio of heteroatomic dopants suitable for ORR of AEMFCs. The catalysts were prepared under harsh oxidation conditions, followed by a simple co-doping process with boron and nitrogen. The ORR activity of the catalysts was observed to be related to an increase of edge sites with heteroatomic dopants. We believe that the edge-enriched structure leads to accelerated electron transfer with enhanced oxygen adsorption.  相似文献   
4.
The indentation technique is widely used in measuring the mechanical properties of soft matter at the microscale or nanoscale,but still faces challenges by these unique properties as well as the consequent strong surface adhesion, including the strong nonlinear effect, unclear judgment of the contact point, difficulties in estimating the contact area, and the risk of the indenter piercing the sample. Here we propose a two-step method to solve these problems: lay a hard film on a soft matter, and obtain the viscoelastic properties of this soft matter through the indentation response of this composite structure. We first establish a theoretical indentation model of the hard film-soft substrate system based on the theory of plates, elastic-viscoelastic correspondence principle and Boltzmann superposition principle. To verify the correctness of this method, we measure the mechanical properties of the methyl vinyl silicone rubber(MVSR) covered by a Cu nanofilm. Finally, we test the effectiveness and error sensitivity of this method with the finite element method(FEM). The results show that our method can accurately measure the mechanical properties of soft matter, while effectively circumventing the problems of the traditional indentation technique.  相似文献   
5.
The sonochemical formation of Au seeds and their autocatalytic growth to Au nanorods were investigated in a one-pot as a function of concentration of HAuCl4, AgNO3, and ascorbic acid (AA). The effects of ultrasonic power and irradiation time were also investigated. In addition, the formation rate of Au nanorods was analyzed by monitoring the extinction at 400 nm by UV–Vis spectroscopy and compared with the growth behavior of Au seeds to nanorods. Most of the reaction conditions affected the yield, size, and shape of Au nanorods formed. It was confirmed that the concentration balance between HAuCl4 and AA was important to proceed the formation of Au seeds and nanorods effectively. The formation rate became faster with increasing AA concentration and dog-bone shaped nanorods were formed at high AA concentration. It was also confirmed a unique phenomenon that the shape of Au nanorods changed even after the completion of the reduction of Au(I) in the case of short-time ultrasonic irradiation for Au seed formation.  相似文献   
6.
The complex interplay of restricted mass transport leading to local accumulation or depletion of educts, intermediates, products, counterions and co-ions influences the reactions at the active sites of electrocatalysts when electrodes are rough, three-dimensionally mesoporous or nanoporous. This influence is important with regard to activity, and even more to selectivity, of electrocatalytic reactions. The underlying principles are discussed based on the growing awareness of these considerations over recent years.  相似文献   
7.
We numerically solve the time-dependent Ginzburg–Landau equations for two-gap superconductors using the finite-element technique. The real-time simulation shows that at low magnetic field, the vortices in small-size samples tend to form clusters or other disorder structures. When the sample size is large, stripes appear in the pattern. These results are in good agreement with the previous experimental observations of the intriguing anomalous vortex pattern, providing a reliable theoretical basis for the future applications of multi-gap superconductors.  相似文献   
8.
Covalent organic frameworks (COFs) are a new class of crystalline porous polymers comprised mainly of carbon atoms, and are versatile for the integration of heteroatoms such as B, O, and N into the skeletons. The designable structure and abundant composition render COFs useful as precursors for heteroatom-doped porous carbons for energy storage and conversion. Herein, we describe a multifunctional electrochemical catalyst obtained through pyrolysis of a bimetallic COF. The catalyst possesses hierarchical pores and abundant iron and cobalt nanoparticles embedded with standing carbon layers. By integrating these features, the catalyst exhibits excellent electrochemical catalytic activity in the oxygen reduction reaction (ORR), with a 50 mV positive half-wave potential, a higher limited diffusion current density, and a much smaller Tafel slope than a Pt-C catalyst. Moreover, the catalyst displays superior electrochemical performance toward the hydrogen evolution reaction (HER), with overpotentials of −0.26 V and −0.33 V in acidic and alkaline aqueous solution, respectively, at a current density of 10 mA cm−2. The overpotential in the catalysis of the oxygen evolution reaction (OER) was 1.59 V at the same current density.  相似文献   
9.
10.
This review summarizes the different tools and concepts that are commonly applied in air quality monitoring. The monitoring of atmosphere is extremely important as the air quality is an important problem for large communities. Main requirements for analytical devices used for monitoring include a long period of autonomic operation and portability. These instruments, however, are often characterized by poor analytical performance. Monitoring networks are the most common tools used for monitoring, so large-scale monitoring programmes are summarized here. Biomonitoring, as a cheap and convenient alternative to traditional sample collection, is becoming more and more popular, although its main drawback is the lack of standard procedures. Telemonitoring is another approach to air monitoring, which offers some interesting opportunities, such as ease of coverage of large or remote areas, constituting a complementary approach to traditional strategies; however, it requires huge costs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号